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Abstract—Electrodermal activity (EDA) is a widely used
physiological marker for assessing sympathetic nervous system
activation, emotional arousal, and stress. However, EDA signals
acquired from wearable devices are often degraded by motion
artifacts and connectivity issues, posing significant challenges for
reliable interpretation.

In this study, we present a novel efficient and enhanced
automatic EDA signal quality index system inspired by training
paradigms for modern large language models. We first pre-
train model with unsupervised tasks, specifically denoising and
forecasting, followed by supervised fine-tuning using a lightweight
backbone model and a publicly available expert-labeled dataset.
Our method demonstrates an ROC-AUC of 0.851 on the EDABE
benchmark dataset, an 8% improvement to previous models,
while reducing the number of supervised training epochs by half,
therefore improving the efficiency.

The proposed model maintains strong performance at low
input sampling rates (4 Hz), compatible with commonly used
wearable EDA sensors, and has a compact footprint of less
than 0.3 MB (approximately 1% of a representative baseline
model), enabling real-time inference on resource-constrained
edge devices. Unsupervised pre-training can reduce reliance
on large labeled datasets while improving performance. These
characteristics support scalable, low-power EDA signal quality
assessment and make the framework well suited for continuous
physiological monitoring in wearable sensor systems.

Index Terms—Electrodermal activity (EDA), Galvanic skin
response (GSR), motion artifacts, real-time prediction, signal
quality index (SQI), unsupervised pre-training, wearable health
solution.

I. INTRODUCTION

Electrodermal activity (EDA), also known as Galvanic skin
response (GSR), is a measure of the electrical conductivity
of the skin, modulated by the activity of sweat glands [1].
Sweat gland activity responds to psychological stimuli and
reflects the activity of the sympathetic nervous system [2].
Increased sweat production, in turn, enhances skin electrical
conductivity, which is captured in EDA signals. Therefore,
EDA has been studied for stress [3], pain [4], and sleep
quality [5], [6]. For continuous monitoring applications, EDA
is commonly measured on the wrist [7], [8]. For the highest
accuracy, however, fingers or palms are prefered due to their
highest density of eccrine sweat glands [9], [10].

Accurate EDA analysis requires distinguishing high-quality
signal segments from those corrupted by artifacts. Artifact
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contamination is inevitable in daily-life monitoring, making
automated EDA quality detection essential. Several methods
have been proposed: Kleckner et al. [11] applied four rules
to filtered EDA and temperature data, while others extract
statistical features, Skin Conductance Responses features, and
wavelet coefficients from the EDA signal to classify segments
as “artifact” or “non-artifact” [12]-[16].

The most recent studies of EDA motion artifact prediction
are based on deep learning approaches. Llanes-Jurado et al.
[17] proposed a combined long short-term memory (LSTM)
and a 1D convolutional neural networks (CNN) model. Kong
et al. [18] utilized a 1D U-Net model taking both time- and
frequency-domain representations as inputs.

These state-of-the-art (SOTA) methods are trained di-
rectly on labeled data, which are often expensive and time-
consuming to acquire. Both approaches rely on the only
publicly available EDA motion artifact benchmark dataset,
EDABE [19]. Kong et al. [18] additionally used two private
datasets, suggesting that further performance improvements
depend on access to more labeled data.

In this paper, we propose an approach that greatly reduces
the necessary amount of labeled training data by first lever-
aging an unsupervised pre-training stage, followed by fine-
tuning based on a smaller amount of labeled EDA. The idea
is inspired by demonstrated success of utilizing unsupervised
pre-training in natural language models. For example, BERT
employs Masked Language Modeling, in which a subset of
input tokens is randomly masked and the model is pre-trained
to predict the masked tokens [20]. In contrast, GPT-1 [21] and
GPT-2 are pre-trained using an autoregressive forecasting task,
where the model predicts the next token in a sequence [22].
In addition, unsupervised pre-training has been successfully
explored in large-scale wearable foundation models [23] [24],
[25]. These studies demonstrate that pre-training models with
unsupervised tasks and then fine-tuning them for specific tasks
such as activity classification [23] and disease prediction [24]
is an effective strategy.

Unlike large wearable models with many parameters that
require cloud resources and massive datasets, we show that
small models trainable on a single machine for a single modal-
ity can improve state-of-the-art performance. From Table I,
our method improves benchmark ROC-AUC by approximately
8% (0.788 — 0.851), and reduces supervised training time
by half using only one public EDA dataset. The backbone
model is lightweight (68k parameters, < 0.3 MB) and has a
low input sampling rate requirement(4 Hz, compared to some
benchmarks requiring 128 Hz), making it suitable for real-time
deployment on wearable health solutions.
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Fig. 1: Framework Illustration: The model is pre-trained with unsupervised tasks, including denoising (reconstructing 10%
randomly missing values) and forecasting (predicting the next 12.5% of time-frequency features). Subsequently, supervised
fine-tuning is performed using expert-labeled data to predict the EDA Signal Quality Index (SQI), indicating motion artifacts.
Feature extraction from raw EDA waveforms are detailed in Methods II-C, providing inputs for the model.

TABLE I: Summary of EDA SQI methods

Sampling Train Mean
Method Memory Frequency Epochs Test
w. Labels  AUC

LSTM
“IDCNN [17] 26.74 MB 128 Hz - 0.76
U-Net [18] 0.28 MB 4 Hz 100 0.788
Ours 0.28 MB 4 Hz 50 0.851

II. METHODS

The framework of the EDA quality index system is il-
lustrated in Figure 1. The EDA waveform from a wearable
device serves as an input, and our framework generates a
signal quality indicator (SQI) prediction as an output, indicat-
ing motion artifacts. Common off-the-shelf wearable device
choices include Shimmer3 GSR+, Empatica E4, and other
common sensors are described in Section II-A. We pre-process
and extract time and frequency features from the raw EDA
waveforms from a given wearable device, with implementation
details summarized in Section II-C. Our model is first pre-
trained in unsupervised manner and then fine-tuned to perform
EDA SQI prediction utilizing expert labels.

Training inputs for unsupervised pre-training tasks are gen-
erated by simulation from features extracted from raw EDA
signals. For the denoising task, we simulated random masks
to corrupt the original input features by generating partially
missing data. For the forecasting task, we used consecutive
data windows as input-target pairs to train the model to
predict future values. Example outputs of the simulator and
the predictions from our model for denoising and forecasting
tasks can be viewed in Figure 5 and Figure 6 respectively.

After pre-training, the model is fine-tuned using labeled

datasets containing EDA signals and their corresponding sig-
nal quality indices, where good quality labels correspond to
segments without motion artifacts, and bad quality labels for
segments with motion artifacts. Once trained, the model can
be deployed to predict the quality of EDA signals, determining
whether the signal is useful. The threshold for classifying
signal quality can be adjusted based on user preferences.

A. Common EDA Wearable Sensors Devices

EDA is widely used to monitor sympathetic nervous system
activity, stress, and emotional states, and various wearable
devices have been developed to capture EDA signals and
provide EDA-derived insights. Research-grade devices: Em-
patica E4 [26], Empatica Embrace 2 [27], and Shimmer3
GSR+ [28] provide continuous raw EDA waveforms sampled
at 4, 4, and 128 Hz, respectively, supporting full wearable
health solutions. For low-cost personal use, the Mindfield
eSense GSR [29] provides waveforms sampled at 5 Hz for
biofeedback. These devices are our top choices for EDA
quality assessment. Table II summarizes these devices and
their sampling frequencies, most at 5 Hz or lower, except the
high-accuracy Shimmer3 GSR+ at 128 Hz.

Some consumer wearables, such as the Fitbit Sense and
Garmin smartwatches, provide stress or body-response metrics
derived from proprietary algorithms [30], [31]. However, these
devices do not grant user access to raw EDA waveforms, and
therefore are not suitable hardware options.

B. The EDABE Dataset

We utilized the “Electrodermal Activity artifact correc-
tion BEnchmark” (EDABE) [19] public dataset to train and
evaluate our approach. EDABE is designed for developing



(a) Example of a raw EDA waveform with motion artifact annotation from EDABE dataset
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Fig. 2: (Top) Example of an annotated artifact in the raw EDA signal, with the blue-shaded area indicating motion artifacts
as labeled by an expert. (Bottom) Model outputs from LSTM-1D CNN (in orange), 1D U-Net (in blue), and our method (in
green). The 1D U-Net was trained from scratch for 100 epochs, while our method was fine-tuned for 50 epochs from the same
1D U-Net backbone pre-trained on the denoising task.

TABLE II: Common EDA/GSR Wearable Sensors Ledalab [32] software to perform either linear or spline

interpolations on motion-affected segments.

EDA/GSR Device Sampling Frequency ] ) )

Empatica E4 [26] T One expert labeled EDA signals from 21 subjects while
Empatica Embrace 2 [27] 4 Hz the other labeled 22 subjects. Afterwards, the whole dataset
Mindfield eSense GSR [29] 5 Hz was divided randomly into a training set comprised of 33
Shimmer3 GSR+ Unit [28]  Up to 128 Hz subjects (56.27 hours) and a test set with 10 subjects (18.19

hours) by the data publisher [17]. For benchmark purposes,
we adopt the same Train-Test split in our experiment, and
refer them as EDABE-Train and EDABE-Test, respectively.
Motion artifacts are more rare compared to non-affected areas,
with approximately 10% in this dataset, and has large variance
across different subjects. A detailed summary is provided in

and evaluating models for automatic artifact recognition and
correction in electrodermal activity (EDA) signals. It is the
first publicly available benchmark that enables systematic
comparison of methods for EDA signal quality assessment and

artifact detection. Table IIL
The EDABE dataset consists of 74.46 hours of EDA record- TABLE III: Summary of EDABE [19] Dataset
ings from 43 subjects, with signals affected by hand and body
motion artifacts. Data were collected using a Shimmer3 GSR+ Set  # Subjects Recording  Motion Artifact (%)
Unit at a sampling rate of 128 Hz. The data were collected Total 43 74.46 (hrs) 10.6 + 11.6
during an immersive virtual reality tasks, simulating work and Train 33 56.27 (hrs) 100 + 11.8
Test 10 18.19 (hrs) 12.8 £+ 10.6

life situations, and a reference signal quality index indicating
the presence of motion artifacts was manually annotated by
two experts. The dataset contains the raw EDA signal and In our work, we use raw EDA signals from the EDABE
the manually corrected EDA signal by two experts utilizing dataset as model inputs, with expert binary labels as targets.
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Fig. 3: Example Input Features: (Top) time-domain features,
high-pass filtered (0.01 Hz) and downsampled from EDA
raw input (Figure 2a); (Bottom) Frequency-domain features
from short-time Fourier transform (STFT) with 2 Hz Nyquist
Frequency

An example of a raw EDA signal and its corresponding expert
annotations is shown in Figure 2a.

C. Time-Frequency Feature Extraction

We implemented the same pre-processing as well as feature
extraction pipeline as our backbone model method, described
in the U-Net EDA SQI work [18]. We first apply a high-
pass filter to the raw EDA waveforms with a cutoff frequency
of 0.01 Hz. Further, the signal is downsampled to 4 Hz, as
evidence from the literature indicates that motion artifacts are
primarily low-frequency signals [33]. This sampling frequency
is widely adopted in EDA wearable devices, including popular
research devices such as Empatica E4 [26].

To derive spectrograms, pre-processed signal was divided
into 128-second segments. For each segment, we apply a short-
time Fourier transform (STFT) with a 2-second window, and
a 50% overlap (1—second). A Hann window is utilized, and
the number of Fast Fourier Transform points (NFFT) equal to
8, corresponding to the Nyquist frequency at 2 Hz.

The resulting time-domain high-pass filtered signal, cor-
responding to the same 128-second window, was resampled
and normalized. This signal was then combined with the
frequency-domain features to generate a joint time-frequency
representation. The combined features serve as inputs to
the 1D U-Net model. An example of the time-domain and
frequency-domain features is visualized in Figure 3.

D. U-Net as a Lightweight Backbone Model

U-Net is a convolutional neural network (CNN) based
architecture originally developed for image segmentation tasks

[34] that has many biomedical applications. In the work of
Kong et al. [18], the author introduced a variant of U-Net that
utilizes one-dimensional (1D) convolutional kernels to predict
the signal quality index (SQI). We employ the same encoder-
decoder architecture from Kong et al.’s work [18] and added
a head for unsupervised pre-training.

Figure 4 illustrates the model structure of the 1D U-Net for
unsupervised pre-training as well as motion artifact prediction.
The input dimension of our model is 5 features combining both
features from time and frequency domains, and a total of 128
timesteps extracted from one segment.

The U-Net backbone structure consists of 3 convolutional
blocks, each followed by max pooling layer to reduce fea-
ture dimensions. Each convolutional block consists of two
convolutional layers of kernel size 5 with a skip connection
between their outputs. Each convolutional layer were followed
by batch normalization and the rectifier unit (ReLU). In the
encoder parts of U-Net to generates abstract feature maps
of the original signals, max pooling with a size of 2 was
employed to reduce the feature map size by half, while in
U-Net decoder, aiming at signal reconstruction, the feature
maps outputs from encoder then upsampled by a factor of 2,
allowing reconstructing signal of the same input size.

In our encoder, each convolution layer contains the number
of filters 8, 16, 32, the bottleneck convolution layer contains 64
filters. In the U-Net decoder, convolution layers have 32,16
filters, and feature maps from the encoder convolutional blocks
were directly concatenated at the same level. The final layer
for unsupervised pre-trained tasks with output size 5 x 128,
matching the input dimension. For the final layer for signal
quality, it ensures an output size of 1 x 128 to generate one
prediction per timestep (1 prediction per second).

E. Unsupervised Pre-training

We begin the unsupervised pre-training tasks by first gener-
ating data. For the denoising task, we simulate random binary
masks on the original features, zeroing out 10% of the values
randomly to create input-target pairs consisting of corrupted
and original data segments, respectively. For the forecasting
task, we construct prediction target by advancing the time
window by 16 seconds relative to the input, corresponding
to a 12.5% shift within a total window length of 128 seconds.

Next, we construct the pre-trained model by adapting the
original 1D U-Net architecture. While the encoder retains its
original structure, we modify the task-specific output layer to
align with the dimensions of the input joint time-frequency
features. This ensures that the outputs of the unsupervised
tasks—denoising and forecasting—have the same shape as the
input data. Specifically, we set the number of output channels
in the final layer equal to the input feature dimension.

We use the mean squared error (MSE) loss function for
both the denoising and forecasting tasks. In the denoising task,
the model minimizes the difference between the reconstructed
feature X = Junet(X1 noisy), and the original feature X,
whereas for forecast, the model minimizes variance between
predicted signal XT+1 = funet(Xr) to the original next
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Fig. 4: U-Net model architecture for pre-training tasks (denoise, forecast) and supervised fine-tune to output Signal Quality
Index. All convolution layers with kernel size are set with kernel size 5.
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Fig. 5: Unsupervised Pre-Training, Denoise Task: The noisy
example is generated by masking 10% values to zero at random
locations in the input features. The model is pre-trained to
reconstruct the missing values. The denoised output is from
model pre-trained for 200 epochs. The mean squared error
(MSE) on the entire training dataset is low, only 0.00664.

feature X71. Given N total segments, the MSE loss for
denoise is defined as:

N
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For forecast task, the same MSE loss is defined as:
N-1

> IXrg1 = funa(Xr)|.

-1
T=1

1
LX) =

5 @)

For pre-training tasks, we use a batch size of 512 and the
Adam optimizer, with a learning rate and weight decay both
set to 0.0001. The denoising task is trained for 200 epochs,
resulting in a low MSE of 0.0066 on the entire training dataset.
Using the same training configuration for the forecasting task,
the model achieves an MSE of 0.00076.

Representative results of the unsupervised tasks are illus-
trated in Figure 5 and Figure 6. When compared to the ground
truth examples, the denoised and forecasted outputs demon-
strate the model’s ability to accurately reconstruct missing data
and forecast future segments.
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Fig. 6: Unsupervised Pre-Training, Forecast Task: The forecast
target is generated by shifting the feature window 16s forward
in time. The model is pre-trained to predict 12.5% of a 128-s
segment. The forecasted output is generated after pre-training
for 200 epochs. The MSE on the entire training dataset is low,
only 0.00757.

F. Fine-Tune on Motion Artifact Signal Quality Index

After pre-training the model with unsupervised tasks, we
then fine-tune the model for our main task: predicting the
signal quality of EDA signals. We leverage both the time-
frequency features and expert-labeled signal quality annota-
tions from the EDABE dataset.

For a direct comparison with prior work [34], the fine-tuning
process follows mostly the same training configuration as the
model trained from scratch, with the exception of reducing
the number of training epochs to 50. We use a batch size of
512 and the Adam optimizer, with learning rate and weight
decay both set to 0.0001. In addition, we adopt the same loss
function as prior work [34]: an average of the Dice coefficient
loss (DICE) and Binary Cross-Entropy (BCE) loss.

To derive the DICE loss, we first denote the estimated signal
indicator g, which is derived from input features Xt passing
from the feedforward network U-Net fy.ne.. Then o- denotes
the activation that generates SQI: § = o - fune(XT). The



DICE loss is as the following:
20(§)o(y) + ¢
o(§) +o(y) +e

where a small positive term ¢ set to 107 is added to improve
numeric stability. The BCE loss is as follows:

Loce(y, §) = —ylog(§) — (L —y)log(1 - 9). 4

Finally, the loss function for the EDA SQI supervised
learning task takes an average over the two losses:

Lepa-sqr = 0.5Lpice + 0.5LpcE. (5)

CDICE(%@) =1- 3

III. RESULTS

We evaluate our approach using the EDABE dataset and
compare its performance against the benchmark 1D U-Net
implementation [18], where the network was trained from
scratch, as well as another architecture LSTM-1D CNN [17].
For benchmarking, we begin with an overview of the im-
plementations for training the backbone model U-Net from
scratch. Finally, we analyze the performance differences be-
tween the LSTM-1D CNN, the original U-Net, and our model,
highlighting the benefits of supervised fine-tuning from the
model pre-trained with unsupervised tasks.

A. Implementation of EDA 1D U-Net benchmark

To reproduce the U-Net results for generating baseline
performance for model trained from scratch, we adopted
most of the parameters from the original work of Kong et
al. [18]. One key difference is that we only have access
to the public EDABE dataset, whereas the authors also uti-
lized two additional private datasets. Fortunately, these private
datasets are relatively small, accounting for less than 10%
of the total training data. Therefore, the absence of private
datasets is unlikely to significantly affect the overall training
performance. Moreover, to evaluate the benefit of unsupervised
pre-training, it is sufficient to train the backbone model using
only EDABE. Here we simply use the same EDABE dataset
for training model from scratch, pre-training and fine-tuning,
for all comparison methods.

For model training, we adopted the model training param-
eters described by Kong et al. [18]. We utilized the Adam
optimizer with a batch size of 512, a learning rate of 0.0001,
and a weight decay of 0.0001. The original study reported
no further improvement beyond 98 epochs; accordingly, we
trained our model for 100 epochs to ensure comparable results.

B. Performance Comparison

We evaluate the cumulative performance of the original
1D U-Net method, which trains the U-Net from scratch with
random initialization, and our approach utilizes unsupervised
pre-training tasks. All performance metrics are reported on
EDABE-Test set, from models trained from EDABE-Train set,
where the train-test split is provided by the publisher and is
available at the EDABE dataset website [19].

To assess cumulative performance, we calculated the ROC-
AUC score for each recording in the test set. Subsequently,

we computed the mean, standard deviation, median, minimum,
and maximum ROC-AUC scores, as summarized in Table IV.

Our results show a significant performance improvement
when utilizing unsupervised pre-training. The mean ROC-
AUC score increased from 0.788 to 0.851, representing a
substantial gain compared to model trained from scratch.
While the standard deviation remains similar, the median
ROC-AUC improved from 0.809 to 0.866. Additionally, the
lowest ROC-AUC score increased from 0.652 to 0.717, and
the highest ROC-AUC score rose from 0.896 to 0.974.

Beyond performance improvements, unsupervised pre-
training reduces supervised training time. Training from
scratch generally requires 100 epochs achieve comparable
performance, as reported in prior work [18]. In contrast, fine-
tuning a pre-trained model achieved improved performance
with only 50 epochs, effectively halving the supervised train-
ing time. The training epochs for comparative methods are
detailed in Table I.

C. Threshold-Dependent Metrics

In addition to ROC-AUC scores, we evaluate a compre-
hensive set of commonly used threshold-dependent metrics,
as detailed in Table V. Thresholds 7 are selected via a grid
search ranging from 0.1 to 0.9 with a step size of 0.1. The
optimal threshold is chosen based on the highest Gy score,
defined as the geometric mean of sensitivity and specificity,
after which the remaining metrics are reported. This threshold
selection strategy is consistent with the approach used by Kong
et al. [18]. In practical deployment, users may select alternative
thresholds according to application-specific criteria, such as
a targeted false alarm rate. As shown in Table V, utilizing
the pre-trained model yields a substantial improvement in
sensitivity, increasing from 0.47 when trained from scratch
to 0.78.

In binary classification tasks, there is often a trade-off
between the True Positive Rate (sensitivity) and True Negative
Rate (specificity), particularly in imbalanced problems where
one class is much more prevalent than the other. In the case
of EDA motion artifact prediction, the dataset exhibits such
imbalance, with 10% positive prevalence in the training set
and 12.8% in the test set.

To measure joint performance of sensitivity and specificity,
(1, balanced accuracy, and F} metrics are indicative, and we
show the improvement of utilizing a pre-trained model for all
those metrics. Fine-tuning from the model pre-trained on the
denoising task yields the highest G score at 0.75, compared
to the one trained from scratch at 0.64. In addition, U-Net
from pretrained denoise task outperforms the benchmark on
Balanced Accuracy scored at 0.77 compared to without pre-
training at 0.69. For F; score, the model pretrained with the
forecasting task outperforms other methods. A similar F} score
is achieved by the model pre-trained with a combination of
forecast and denoising tasks.

This is an evidence that pre-trained models can increase
performance of both predicting positive and negatives com-
pared to the base model. Model performance metrics indicate
a reduction of false positives and false negatives by utilizing



TABLE IV: Performance of ROC-AUC score on EDABE-Test recordings, * are reported performance from the cited paper, '
are performance reported from our implementation. For all performance reported below, EDA data are trained from raw data
from EDABE. Fine-tuned from Denoise pre-train task achieves the highest average AUC at 0.851, higher than EDABE by
12%, and Unet by 8%, with the model size only approximately 1% of EDABE model.

ROC-AUC on EDABE-Test Mean (Std) Median Min Max
LSTM-1DCNN* [17] 0.76 (0.060) - - -
U-Net' [18] 0.788 (0.087) 0.809 0.652  0.896
Ours-Denoise-50 0.851 (0.089) 0.866 0.717 0974
Ours-Forecast-50 0.832 (0.088) 0.855 0.694  0.947
Ours-Denoise & Forecast-200  0.831 (0.082) 0.850 0.712  0.946

TABLE V: Record-level performance metrics on the EDABE-Test set for various algorithms. Results for single pre-training tasks
— Denoise or Forecast — are reported after 50 epochs of supervised fine-tuning with expert labels. Additionally, the jointly
pre-trained Denoise-and-Forecast model demonstrated reduced variance in performance but did not achieve more improvement
compared to single task. Supervised fine-tuning results for the joint model are presented after 50, 100, 150, and 200 epochs,

denoted as DF-50, DF-100, DF-150, and DF-200, respectively.

Method T Gl BalAcc F1 Accuracy Sensitivity Specificity  DICE Kappa
LSTM-1DCNN* 02 - - - 0.88 (0.09) 0.65 (0.16) 0.89 (0.17)  0.57 (0.07)  0.49 (0.08)
Unetf 0.1  0.64(0.14)  0.69(0.08)  0.42(0.15)  0.87(0.05) 0.47(0.2) 0.91(0.06) 0.42(0.15) 0.35(0.12)
Ours-Denoise-50 0.2 0.75(0.10)  0.77(0.08)  0.43(0.13)  0.78(0.08) 0.78(0.2) 0.76(0.13) 0.43(0.13) 0.31(0.09)
Ours-Forecast-50 0.1  0.68(0.14)  0.72(0.09)  0.46(0.15)  0.87(0.05) 0.54(0.22)  0.90(0.08) 0.46(0.15) 0.38(0.13)
Ours (MTL):

DF-50 0.1  0.70(0.12)  0.73(0.09)  0.41(0.14)  0.81(0.07) 0.64(0.22) 0.81(0.11) 0.41(0.14) 0.3(0.11)
DF-100 0.1  0.69(0.13)  0.72(0.09)  0.44(0.15)  0.85(0.05) 0.58(0.22) 0.87(0.08) 0.44(0.15) 0.35(0.12)
DF-150 0.1  0.69(0.13) 0.73(0.09) 0.45(0.14)  0.86(0.05) 0.58(0.21) 0.88(0.07) 0.45(0.14) 0.36(0.11)
DF-200 0.1  0.68(0.13)  0.72(0.09)  0.45(0.15)  0.87(0.04) 0.53(0.21)  0.90(0.06) 0.45(0.15) 0.38(0.12)

pre-trained tasks compared to directly training from scratch
on the supervised learning task.

D. Visualizations

To better understand the benefits of unsupervised pre-
training, we visualize model predictions on 128-second seg-
ments from different subjects from EDABE-Test sets compar-
ing the outputs probabilities of the 1D U-Net trained from
scratch (100 epochs) and the 1D U-Net fine-tuned from a
pre-trained denoise task (50 epochs). These visualizations,
shown in Figure 2b and Figure 7, highlight performance
improvements achieved through unsupervised pre-training.

In Figure 2b, the reference labels show almost half signal
in this segment are motion-free and half motion affected. Our
fine-tuned model successfully identifies the whole region as
having artifacts, whereas the 1D U-Net trained from scratch
identifies some artifacts throughout the section, but it also has
many gaps within which it marks as false negative.

In Figure 7, the model trained from scratch correctly
predicts the first peak at 30—40 seconds but generates false
positives around 45 seconds and misses peaks around 80
seconds. In contrast, the model fine-tuned from the pre-trained
task accurately identifies the peak at 30 seconds, and although
it produces smaller false positives after 40 seconds, these
can be reduced by increasing the decision threshold. It also
correctly predicts peaks around 80 and 105 seconds, which
the model trained from scratch missed.

In general, utilizing unsupervised pre-training is able to re-
duce false positive and false negatives. Our model pre-trained
with denoise task yields higher prediction probability values

on average than the model trained from scratch, resulting in a
relative higher optimal decision threshold.

IV. DISCUSSION

In this work, we have presented an automatic EDA signal
quality index system that leverages unsupervised pre-training.
In this section, we will discuss various task choices for
pre-training our EDA model, and how they vary different
performance metrics. In addition, we are going to discuss
two important aspects in production 1) a lightweight and
therefore deployment friendly model, 2) low requirement on
sampling frequency, making the framework suitable to most
EDA wearable devices. Both model design choices make
the proposed framework desirable for real-time deployment
on wrist-based EDA solutions. Finally, we touch on broader
future potential of this work, with its potential on multimodal
solution as well as EDA based stress predictions.

A. Pre-train tasks choices: Denoise vs Forecast

For pre-training models, multiple unsupervised tasks are
commonly chosen such as denoise, forecast, self-contrastive
learning. In this work, we design our unsupervised pre-training
tasks to be denoising, forecasting, and a combination of both.

1) Denoise vs Forecast: From AUC performance, we could
see that if we are training a single task, then model pre-
trained on denoising task performs better than the one trained
on forecasting task. This is logical beause, in our setup, it is
easier to denoise corrupted values. Denoise task missing data
ratio is 10% compared to a forecasting task where the model
needs to learn to predict the features from the next batch,
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Fig. 7: Visualization comparisons of a U-Net trained from scratch (in blue) vs Ours (in green). The model trained from scratch
tends to produce more false positives at 40-50s, and fails to identify positives around 80-90s. Our fine-tuned model reduces

false positives and false negatives.

therefore with 1/8 = 12.5% of unseen data and 87.5% of an
overlap between the original features and the ground truth of
the forecast features.

In addition, forecast with 1/8 new information is generally
more difficult than denoise as the later can take advantage
of signal’s local information. Especially when signal is not
periodic as other modalities such as ECG, PPG (one EDA
example shown in Figure 6), forecast is a lot harder than
denoise task. In denoising task, since it is not casual within
a window, neighborhood information can be used for denoise
signal, it is an easier task than forecast non-periodic signals.

As shown in Table IV and Table V, pre-training on the
denoising task leads to improved performance in ROC-AUC,
(1, Balanced Accuracy, and Sensitivity compared to training
from scratch. Meanwhile, pre-training on the forecasting task
results in higher scores for F'1, Accuracy, Specificity, DICE,
and Kappa. From accumulative metrics such as ROC-AUC,
pre-training on denoise task is more desirable.

2) Pre-Train with Both tasks: Reduced AUC Variance at the
Cost of More Complex Pre-Training and Longer Fine-Tuning:
Pre-training the model with both denoising and forecasting
tasks results in a some reduction in the variance of AUC scores
on SQIL In terms of other threshold dependent performance
metrics, the performance of pre-trained both tasks are in
between of the models pre-trained individually on each task.

To enable simultaneous learning of both tasks, we pre-
train the model using a multi-task learning (MTL) framework.
Specifically, we define a composite loss function as the sum
of the mean squared error losses for the denoising and fore-
casting tasks. During training, we observe that the denoising
loss initially exceeds the forecasting loss, but both decline
consistently over the epochs, indicating effective learning for
both tasks.

While MTL improves stability and reduces variance in
performance, it also introduces a higher computational cost,
requiring longer fine-tuning times compared to single-task
models (200 vs 50 epochs). Moreover, the observed variance



reduction is modest, partly due to the limited EDABE test set
size. Evaluating MTL on larger and more diverse datasets may
further reveal its potential benefits and limitations.

B. Deployment-Friendly Designs: small model memory and
low sampling frequency requirement

When it comes to making this algorithm feasible for real-
time deployment, two important aspects are: small memory
and low input EDA/GSR sampling frequency requirement.

1) Comparison of Model Sizes and Memory Consumptions:
The backbone model that we use utilizes 1-D convolutions
and 1-D pooling. As a result, the number of parameters is
much smaller compared to similar architectures using 2D
convolutions or LSTM-based framework. Consequently, it has
significantly lower power consumption compared to other
methods. The model requires only 0.28MB of memory as
opposed to 26.74MB for LSTM approach and 54.59MB for
2D U-Net approach proposed by [17]. Small model size
promotes efficient training as well as low cost for hosting
service, making it preferable for potentially hosting solutions
on wearable devices.

2) Potential Extension to Wrist-Based Solutions: In contrast
to the LSTM-1D CNN method, which requires EDA signals
sampled at 128 Hz, the proposed model operates effectively
with input data sampled at only 4 Hz. This significantly
lower sampling frequency aligns with the specifications of
widely used wrist-worn EDA devices, such as those developed
by Empatica, which typically provide EDA signals at 4 Hz.
The reduced data rate requirement of the proposed model
suggests strong potential for real-time deployment on wearable
platforms for motion artifact prediction.

C. Future Work

Beyond performance improvements, our method offers sev-
eral practical advantages. Training from a pre-trained model
reduced the time required for developing EDA quality assess-
ment models significantly. By leveraging unsupervised pre-
training, our approach minimizes reliance on costly expert-
labeled data. Furthermore, the pre-trained model framework
enables knowledge transfer across datasets and devices, mak-
ing it scalable for future wearable health applications.

Our work aligns with the recent trends in wearable Al,
where companies such as Google, Apple, and Nokia Bell Labs
have explored foundation models for physiological signals
from wearable devices. Our advantage and special offerings
are: i) Unlike previous approaches that primarily focus on PPG
and ECG signals, our method explicitly incorporates EDA,
addressing a crucial gap in wearable health technology. ii)
our backbone model is lightweight to avoid overfitting, as
EDA datasets are less available, and amount are smaller than
ECG, PPG signals. iii) Pre-trained denoising task is suitable
for non-periodic signals EDA, has shown strong performance
compared to common pre-train tasks utilizes prediction.

Future work includes using the model to predict stress
from EDA signals, as the secondary study goal of EDABE
data collection is to measure stress from VR study [17]. The

extension to stress research could be valuable if protocol or
stress timestamps would be made available publically.
Additionally, future research could explore extending our
pre-trained model to multi-modal learning, incorporating addi-
tional physiological signals for more comprehensive wearable
health solutions. Overall, this study demonstrates the potential
of pre-trained models in EDA signal analysis, contributing to
more reliable and scalable physiological monitoring solutions.

V. CONCLUSION

In this work, we propose fine-tuning on unsupervised pre-
training tasks, including denoising and forecasting, to enhance
the performance of EDA signal quality assessment from a
lightweight backbone model. This approach addresses a key
challenge—the scarcity of expert-labeled EDA waveforms
for motion artifacts, which limits training an accurate fully
supervised model.

By first pre-training our model with unsupervised task, and
then fine-tuning it for quality index scoring, we achieved sub-
stantial performance gains over models trained from scratch.
Our evaluation on the EDABE dataset demonstrated an 8%
increase in mean ROC-AUC, along with consistent gains in
other performance metrics. Notably, for non-periodic signals
such as EDA, denoising proved to be a more effective pre-
training task than forecasting. Due to our lightweight design
and low sampling frequency requirement, the model is highly
suitable for real-time deployment in wearable health monitor-
ing solutions.
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